Q: What great encouragement for you! You were clearly led to fill a need in the homeschooling community, for which we are all grateful! So the path you have taken was really born out of personal as well as professional experience. What happened then?

A: Interestingly enough, our life was turned pleasantly upside down the year I was writing the chemistry course, because we adopted the young woman I mentioned previously. She had been "educated" in the public school system all of her life, but we pulled her out of school and homeschooled her for the final two years of her high school education. This year, she graduated from Butler University with a B.A. in sociology. She plans to get her master's in social work (M.S.W.) and go into counseling.

Q: You must be thrilled! You have obviously been a blessing to your daughter - as well as to tons of homeschooling families. Tell us your thoughts on science teaching methods in the United States today. What's good; what's lacking?

A: Science teaching methods in the United States vary considerably from school to school as well as from curriculum to curriculum. Some of these methods are very poor, and others are quite good. As a result, we tend to have a "two-tiered" society: those who understand science and those who do not. Although not everyone could (or should) become a scientist, every person should have a reasonable knowledge of the basic principles of science. Let me start with the good things that are going on in science education. First, there are still schools and curricula which hold to strict, college-preparatory guidelines. They require the students to retain information, they require the students to think critically about the information given, and they present the sciences in their full mathematical rigor. These programs adhere to the "old school" of science education, which is the one that produces results. In these schools and curricula, laboratory exercises are an integral part of the course but not the main focus. A truly rigorous science course will always treat the laboratory component of the course as a sidelight that enhances the book learning rather than a focus in and of itself.

The Internet is another very positive aspect of science education in the United States. There are "Ask a Scientist" websites where you can ask a scientist to answer a question you have never understood. There are homework help websites where students can get help with their studies. There are even high school and college classes students can take via the Internet.

The last (but probably most important) positive aspect of science education in the United States is the growing movement away from evolution. School systems in Kansas and Ohio are actually questioning whether or not students should be indoctrinated in evolution as part of their public school experience. The "Intelligent Design" movement is making real inroads in both secondary schools and universities. This movement away from evolution in both science and science education is mostly centered in the United States and is a positive development both for the progress of science as well as the effectiveness of science education.

Now let's go to the negative. As is the case with other subjects, there is a growing trend to dumb-down science. Many are trying to teach "conceptual" science in which the rigor of mathematics is completely ignored. This not only detracts from the science that the students are supposed to be learning, but it also gives a completely unrealistic view of science. I can't tell you how many students would come into my university chemistry course thinking that they wanted to be chemistry majors because chemistry was so "fun" in high school. However, when these students saw what real chemistry is (in all of its mathematical glory), they quickly changed majors.