The "discovery" approach to science in junior high and high school is another negative trend in science education. In this model, students are continually doing experiments trying to "discover" scientific principles for themselves. The idea is that if they "discover" the principles for themselves, they are more likely to remember those principles. Although this approach can be used in some specific areas of science education (especially in the elementary years), it becomes less and less effective in the junior high and high school years. That's because the amount of information that the students need to learn in junior high and high school is simply too large. It took us 3,000 years to learn science by discovery. Most students just don't have that kind of time. Along with the "discovery" approach to science education in junior high and high school, there is a disturbing growth in the importance of laboratory work in some programs. The reason, of course, is easy to understand. Lab work is "fun," while bookwork is "hard." Thus, to make the students "enjoy" science more, some schools and some curricula spend way too much time on laboratory exercises and not enough time on bookwork.

You might be surprised that a scientist would say something like this, but please understand that it comes from experience as both a scientist and a science teacher. A student must spend the majority of his or her science education doing bookwork, not lab work. There are three reasons for this. First, it is simply impossible to do classroom experiments that will teach most of what a student needs to learn at the level of rigor that is necessary. Although some scientific principles can be taught in the lab, the majority of subjects in science are simply too detailed to fit into a reasonable high school laboratory framework. Although the quantum-mechanical model of the atom is based on detailed experimental evidence, you simply cannot do a high school experiment that will show the student how to determine electron configurations, a basic step in the quantum mechanical model. Second, lab work takes an enormous amount of time compared to bookwork. Experimentation, data analysis, and reporting of results is a time-consuming process. As a result, it takes a long time to learn just a little in the lab. While doing bookwork, you can learn quite a bit in a short amount of time. Finally, the scientists who developed the science we study today did very little lab work as a part of their secondary (and sometimes college) education. Their science education was mostly bookwork for the vast majority of their schooling, and they seemed to learn science pretty well!

There is one more disturbing trend in science education that I must mention: the "physics first" approach to high school science. In this approach, students are taught physics first, then they are taught chemistry, and then they are taught biology. The reasoning behind this approach is that physics is the most fundamental science, chemistry is built on physics, and biology is built on both chemistry and physics. Thus, some science educators think that students should take physics first as a basis for chemistry. Then, the students can take chemistry, and those two courses will serve as a basis for biology. Although it is true that physics is the most fundamental science, chemistry is built on physics, and biology is built on both chemistry and physics, you cannot effectively teach science that way. First of all, in order to have a proper physics course, a student must know the basic trigonometric functions so that he or she can do vector analysis. Without vector analysis, physics is just an idealized, one-dimensional subject. Thus, to teach physics first, it must be dumbed down by removing the trigonometry. This takes away from the science and gives the student an unrealistic view of what physics is. Second, if you ask a group of students to order the three basic sciences in terms of difficulty, the vast majority of them will say that biology is the easiest, chemistry is harder, and physics is the hardest. When taking physics as their first science course, some students get easily discouraged and decide that they do not like science. As a result, they stop taking it as soon as possible. Some of those students, had they taken biology first, would have "eased into" physics, because they would have been given a "stair-step" approach in terms of difficulty.